Name of Faculty : **RISHI RAJ** Discipline : ME Semester : 6th Subject : Measurement & Instrumentation Lesson Plan Duration : 15 weeks (From Jan 2018 to Apr 2018) **Workload (lecture/ practical) per week (in hours): lectures (3), Practical's (2). | Weeks | | Theory | Practical's | | | |-----------------|-----------------|---|-----------------|--|--| | | Lecture
day | Topic (including assignment/test) | Practical day | Topic | | | 1 st | 1 st | Instruments and Their Representation :
Introduction | 1 st | To Study various Temperature Measuring Instruments and to Estimate their Response times. (a) Mercury – in glass thermometer (b) | | | | 2 nd | Typical Applications of Instrument
Systems, Functional
Elements of a Measurement System | 2 nd | Thermocouple (c) Electrical resistance thermometer (d) Bio-metallic strip | | | | 3 rd | Classification of Instruments,
Standards and Calibration | 3 rd | | | | 2 nd | 1 st | Static and Dynamic characteristics of Instruments : Introduction, | 1 st | To study the working of Bourdon Pressure Gauge and to check the calibration of the gauge in a dead-weight pressure gauge | | | | 2 nd | Accuracy, Precision, Resolution,
Threshold,
Sensitivity, | 2 nd | calibration set up. | | | | 3 rd | Linearity, Hysteresis, Dead Band,
Backlash, Drift, | 3 rd | | | | 3 rd | 1 st | Formulation of Differential Equations for Dynamic Performance- Zero Order, | 1 st | To study a Linear Variable Differential Transformer (LVDT) and use it in a simple experimental set up to measure a small displacement. | | | | 2 nd | First Order and Second order systems | 2 nd | displacement. | | | | 3 rd | Response of First and Second Order
Systems to
Step, Ramp, | 3 rd | | | | 4 th | 1 st | Impulse and Harmonic Functions. | 1 st | | | | | 2 nd | Transducer Elements : Introduction,
Analog and Digital Transducers, | 2 nd | | |-----------------|-----------------|---|-----------------|---| | | 3 rd | Electromechanical; Potentiometric,
Inductive Self Generating and Non-
Self Generating Types,
Electromagnetic, Electrodynamic,
Eddy Current, Magnetostrictive, | 3 rd | To study the characteristics of a pneumatic displacement gauge. | | 5 th | 1 st | Variable Inductance, Linearly Variable
Differential Transformer, Variable
Capacitance, | 1 st | To measure load (tensile/compressive) using load cell on a tutor. | | | 2 nd | PiezoElectric Transducer and
Associated Circuits, Unbonded and
Bonded Resistance Strain Gages | 2 nd | | | | 3 rd | Strain Gage Bridge
circuits, Single Double and Four
Active Arm Bridge Arrangements, | 3 rd | | | 6 th | 1 st | Temperature Compensation, Balancing and Calibration, | 1 st | To measure torque of a rotating shaft using torsion meter/ strain gauge torque transducer. | | | 2 nd | Ionisation Transducers, Mechano
Electronic Transducers, Opto-Electrical
Transducers, | 2 nd | | | | 3 rd | Photo Conductive Transducers, Photo Volatic Transducers, | 3 rd | | | 7 th | 1 st | Digital Transducers, Frequency
Domain Transducer, | 1 st | To measure the speed of a motor shaft with the help of non-contact type pick-ups (magnetic or photoelectric). | | | 2 nd | Vibrating String Transducer, Binary codes, Digital Encoders. | 2 nd | (magnetic of photoelectric). | | | 3 rd | Motion, Force and Torque
Measurement : Introduction | 3 rd | | | 8 th | 1 st | Relative motion Measuring Devices,
Electromechanical,
Optical | 1 st | To measure the stress & strain using strain gauges mounted on simply supported beam/cantilever beam | | | 2 nd | Photo Electric, Moire-Fringe, Pneumatic, Absolute Motion Devices, Seismic Devices | 2 nd | | | | 3 rd | Spring Mass & Force Balance Type,
Calibration, Hydraulic Load Cell,
Pneumatic Load Cell, | 3 rd | | |------------------|-----------------|--|-----------------|---| | 9 th | 1 st | Elastic Force Devices, Separation of Force Components, Electro Mechanical Methods, | 1 st | To measure static/dynamic pressure of fluid in pipe/tube using pressure transducer/pressure cell. | | | 2 nd | Strain Gage, Torque Transducer, Toque Meter, Intermediate, | 2 nd | | | | 3 rd | Indicating and Recording Elements :
Introduction Amplifiers, | 3 rd | | | 10 th | 1 st | Mechanical, Hydraulic, Pneumatic, | 1 st | To test experimental data for Normal Distribution using Chi Square test. | | | 2 nd | Optical, Electrical Amplifying elements, | 2 nd | Distribution using Citi Square test. | | | 3 rd | Compensators, Differentiating and Integrating Elements, | 3 rd | | | 11 th | 1 st | Pressure and Flow Measurement : Pressure & Flow Measurement | 1 st | Practical revision and Problems | | | 2 nd | Introduction : Moderate Pressure
Measurement, Monometers | 2 nd | | | | 3 rd | Elastic Transducer, Dynamic Effects of
Connecting Tubing, High Pressure
Transducer | 3 rd | | | 12 th | 1 st | Low Pressure Measurement, Calibration and Testing, Quantity Meters, | 1 st | Practical revision and Problems | | | 2 nd | Positive Displacement Meters, Flow
Rate Meters, Variable Head Meters,
Variable Area Meters | 2 nd | | | | 3 rd | Rotameters, Pitot-Static Tube
Meter,Drag Force Flow Meter, | 3 rd | | | 13 th | 1 st | Turbine Flow Meter, Electronic Flow Meter, Electro Magnetic Flow meter. Hot-Wire Anemometer. | 1 st | Practical revision and Problems | | | 2 nd | Temperature Measurement : Introduction, Measurement of Temperature, | 2 nd | | | | 3 rd | Non Electrical Methods – Solid Rod
Thermometer, Bimetallic
Thermometer, | 3 rd | | |------------------|-----------------|---|-----------------|---------------------------------| | 14 th | 1 st | Liquid-in-Glass thermometer, Pressure
Thermometer | 1 st | Practical revision and Problems | | | 2 nd | Electrical Methods – Electrical Resistance Thermometers, | 2 nd | | | | 3 rd | Semiconductor Resistance Sensors (Thermistors), | 3 rd | | | 15 th | 1 st | Thermo–Electric
Sensors, Thermocouple Materials, | 1 st | Internal Viva Voce | | | 2 nd | Radiation Methods (Pyrometry), Total Radiation Pyrometer, | 2 nd | | | | 3 rd | Selective Radiation Pyrometer. | 3 rd | | Name of Faculty : RISHI RAJ Discipline : ME Semester : 6th Subject : Automatic Controls Lesson Plan Duration : 15 weeks (From Jan 2018 to Apr 2018) **Workload (lecture/ practical) per week (in hours): lectures (3), Practical's (0) | | Theory | | | | | |-----------------|-----------------|--|--|--|--| | Week | Lecture day | Topic (including assignment/test) | | | | | 1 st | 1 st | Introduction And Applications: Types of control systems | | | | | | 2 nd | Typical Block Diagram : Performance Analysis; Applications | | | | | | 3 rd | Machine Tool Control, Boiler Control, Engine Governing | | | | | 2 nd | 1 st | Aerospace Control, Active Vibration Control | | | | | | 2 nd | Representation of Processes & Control Elements – Mathematical Modeling. Block Diagram Representation | | | | | | 3 rd | Numerical /Assignment | | | | | 3 rd | 1 st | Representation of Systems or Processes, Comparison Elements | | | | | | 2 nd | Representation of Feedback Control systems – Block Diagram & Transfer Function Representation | | | | | | 3 rd | Representation of a Temperature, Control System, Signal Flow Graphs, | | | | | 4 th | 1 st | Problems, Numerical/Assignment | | | | | | 2 nd | Types of Controllers : Introduction : Types of Control Action | | | | | | 3 rd | Hydraulic Controllers; Electronic Controllers; Pneumatic Controllers; | | | | | 5 th | 1 st | Problems, Numerical/Assignment | | | | | | 2 nd | Transient And Steady State Response: Time Domain Representation | | | | | | 3 rd | Laplace Transform Representation; System with Proportional Control | |------------------|-----------------|--| | 6 th | 1 st | Class Test | | | 2 nd | Proportional – cum – Derivative control; Proportional – cum – Integral Control | | | 3 rd | Error Constants; Problems. | | 7 th | 1 st | Frequency Response Analysis: Introduction | | | 2 nd | Closed and Open Loop Transfer Function; Polar Plots. | | | 3 rd | Rectangular Plots; Nichols Plots: Equivalent Unity Feed Back
Systems; | | 8 th | 1 st | 1st Sessional Exam | | | 2 nd | 1 st Sessional Exam | | | 3 rd | 1 st Sessional Exam | | 9 th | 1 st | Stability Of Control Systems : Introduction | | | 2 nd | Characteristic Equation; Routh's Criterion; Nyquists | | | 3 rd | Criterion, Gain & Phase Margins: Problems. | | 10 th | 1 st | Root Locus Method : Introduction; Root Ioci of a Second Order
System | | | 2 nd | General Case; Rules for Drawing Forms of Root Ioci | | | 3 rd | Numerical/Assignment | | 11 th | 1 st | Relation between Root Locus Locations and Transient Response;
Parametric Variation. | | | 2 nd | Problems | | | 3 rd | Digital Control System : Introduction | | 12 th | 1 st | Representation of Sampled Signal; Hold Device | | | 2 nd | Class Test | | | 3 rd | Pulse Transfer Function; Block Diagrams; Transient Response | | 13 th | 1 st | Routh's Stability Criterion; Root Locus Method; Nyquists
Criterion | | | 2 nd | Problems. | |------------------|-----------------|--| | | 3 rd | State Space Analysis Of Control Systems: Introduction; | | 14 th | 1 st | Class Test | | | 2 nd | Generalized State Equation; Techniques for Deriving System State | | | 3 rd | Space Equations; Transfer Function from State Equations | | 15 th | 1 st | Solution of State Vector Differential Equations | | | 2 nd | Discrete Systems; Problems. | | | 3 rd | Class Test | | 1st 1st Definition of Industrial Engineering: Objectives, Method study, Principle of motion economy 2nd Techniques of method study - Various charts, THERBLIGS 3rd Work measurement - various methods, time study PMTS 2nd 4th determining time, Work sampling 5th Numericals 6th Productivity & Workforce Management :Productivity - Definition, Various methods of measurement 3rd 7th Factors effecting productivity, Strategies for improving productivity | Name | of Faculty: I | Mr. Chirag | | | |--|----------|---------------|--|--------|--------------| | Subject: Industrial Engineering | Discipli | ine: | Mechanical Engineering | | | | Lesson Plan Duration:15 weeks (from 29January, 2018 to 30April, 2018) Work Load (Lecture/Practical) per week in hours: Lecture 03, Practical 00 Week Lecture Day Topic (including assignment/test) Day Practical 1st 1st Definition of Industrial Engineering: Objectives, Method study, Principle of motion economy 2nd Techniques of method study - Various charts, THERBLIGS 3rd Work measurement - various methods, time study PMTS 2nd 4th determining time, Work sampling 5th Numericals 6th Productivity & Workforce Management :Productivity - Definition, Various methods of measurement 3rd 7th Factors effecting productivity, Strategies for improving productivity 8th Various methods of Job evaluation & merit rating 9th Various incentive payment schemes, Behavioural aspects, Financial incentives 4th 10th Manufacturing Cost Analysis: Fixed & variable costs, Direct, indirect & overhead costs 11th costing, Recovery of overheads, 12th Standard costing, Cost control, Cost variance Analysis - Labour, material | Semest | ter: | 6th | | | | Work Load (Lecture/Practical) per week in hours: Lecture 03, Practical 00 | Subject | t: | Industrial Engineering | | | | Theory Practical Lecture Day Topic (including assignment/test) Practical Day Topic (including assignment/test) assignment | Lesson | Plan Durat | ion:15 weeks (from 29January, 2018 to 30April, 2018) | | | | Lecture Day Topic (including assignment/test) Definition of Industrial Engineering: Objectives, Method study, Principle of motion economy 2nd Techniques of method study - Various charts, THERBLIGS 3rd Work measurement - various methods, time study PMTS 2nd 4th determining time, Work sampling 5th Numericals 6th Productivity & Workforce Management :Productivity - Definition, Various methods of measurement 3rd 7th Factors effecting productivity, Strategies for improving productivity 8th Various methods of Job evaluation & merit rating 9th Various incentive payment schemes, Behavioural aspects, Financial incentives 4th 10th Manufacturing Cost Analysis: Fixed & variable costs, Direct, indirect & overhead costs 11th costing, Recovery of overheads, 12th Standard costing, Cost control, Cost variance Analysis - Labour, material | Work L | oad (Lectui | re/Practical) per week in hours: Lecture 03, Practical 00 | | | | 1st | Week | | Theory | Pract | ical | | Principle of motion economy 2nd Techniques of method study - Various charts, THERBLIGS 3rd Work measurement - various methods, time study PMTS 2nd 4th determining time, Work sampling 5th Numericals 6th Productivity & Workforce Management :Productivity - Definition, Various methods of measurement 3rd 7th Factors effecting productivity, Strategies for improving productivity 8th Various methods of Job evaluation & merit rating 9th Various incentive payment schemes, Behavioural aspects, Financial incentives 4th 10th Manufacturing Cost Analysis: Fixed & variable costs, Direct, indirect & overhead costs 11th costing, Recovery of overheads, 12th Standard costing, Cost control, Cost variance Analysis - Labour, material | | | Topic (including assignment/test) | | Topic | | 3rd Work measurement - various methods, time study PMTS 2nd 4th determining time, Work sampling 5th Numericals 6th Productivity & Workforce Management :Productivity - Definition, Various methods of measurement 3rd 7th Factors effecting productivity, Strategies for improving productivity 8th Various methods of Job evaluation & merit rating 9th Various incentive payment schemes, Behavioural aspects, Financial incentives 4th 10th Manufacturing Cost Analysis: Fixed & variable costs, Direct, indirect & overhead costs 11th costing, Recovery of overheads, 12th Standard costing, Cost control, Cost variance Analysis - Labour, material | 1st | 1st | | | | | 2nd 4th determining time, Work sampling 5th Numericals 6th Productivity & Workforce Management :Productivity - Definition, Various methods of measurement 3rd 7th Factors effecting productivity, Strategies for improving productivity 8th Various methods of Job evaluation & merit rating 9th Various incentive payment schemes, Behavioural aspects, Financial incentives 4th 10th Manufacturing Cost Analysis: Fixed & variable costs, Direct, indirect & overhead costs 11th costing, Recovery of overheads, 12th Standard costing, Cost control, Cost variance Analysis - Labour, material | - | 2nd | Techniques of method study - Various charts, THERBLIGS | - | | | Sth Numericals | - | 3rd | Work measurement - various methods, time study PMTS | - | | | Standard costing, Cost control, Cost variance Analysis - Labour, material Productivity - Definition, Various methods of measurement Productivity - Definition, Various methods of measurement | 2nd | 4th | determining time, Work sampling | - | | | Various methods of measurement The Factors effecting productivity, Strategies for improving productivity 8th Various methods of Job evaluation & merit rating 9th Various incentive payment schemes, Behavioural aspects, Financial incentives 4th 10th Manufacturing Cost Analysis: Fixed & variable costs, Direct, indirect & overhead costs 11th costing, Recovery of overheads, 12th Standard costing, Cost control, Cost variance Analysis - Labour, material | | 5th | Numericals | | | | Sth Various methods of Job evaluation & merit rating Standard costing, Cost control, Cost variance Analysis - Labour, material Standard costing Display Standard cost Standard cost Standard cost Cost variance Analysis - Labour, material Standard cost Standard cost Cost variance Analysis - Labour, material Standard cost Cost variance Analysis - Labour, Anal | | 6th | | | | | 8th Various methods of Job evaluation & merit rating 9th Various incentive payment schemes, Behavioural aspects, Financial incentives 4th Manufacturing Cost Analysis: Fixed & variable costs, Direct, indirect & overhead costs 11th costing, Recovery of overheads, 12th Standard costing, Cost control, Cost variance Analysis - Labour, material | 3rd | 7th | | snq | snq | | 4th 10th Manufacturing Cost Analysis: Fixed & variable costs, Direct, indirect & overhead costs 11th costing, Recovery of overheads, 12th Standard costing, Cost control, Cost variance Analysis - Labour, material | | 8th | Various methods of Job evaluation & merit rating | Sylla | Not in Sylla | | indirect & overhead costs 11th costing, Recovery of overheads, 12th Standard costing, Cost control, Cost variance Analysis - Labour, material | | 9th | | Not ii | Not ii | | 12th Standard costing, Cost control, Cost variance Analysis - Labour, material | 4th | 10th | | | | | material | - | 11th | costing, Recovery of overheads, | - | | | 5th 13th overhead in volume, rate & efficiency, Break even Analysis | | 12th | | | | | | 5th | 13th | overhead in volume, rate & efficiency, Break even Analysis | | | | 14th Marginal costing & contribution | | 14th | Marginal costing & contribution | | | | 15th Numericals | | 15th | Numericals | | | | 6th | 16th | Class Test | | |------|------|---|--| | | 17th | Materials Management : Strategic importance of materials in manufacturing industries | | | | 18th | Relevant costs, Inventory control models - Economic order quantity (EOQ) | | | 7th | 19th | Economic batch quantity (EBQ) with & without shortage | | | | 20th | Purchase discounts, Sensitivity analysis, Inventory control systems - P,Q,Ss Systems | | | | 21st | Service level, Stock out risk | | | 8th | 22nd | determination of order point & safety stock, Selective inventory control | | | | 23rd | ABC, FSN, SDE, VED and three dimensional | | | | 24th | Numericals | | | 9th | 25th | Quality Management: Definition of quality, Various approaches, Concept of quality assurance systems | | | | 26th | Costs of quality, Statistical quality Control (SQC), Variables & Attributes, X, R, P & C - charts, Acceptance sampling | | | | 27th | OC - curve, Concept of AOQL, Sampling plan - Single, Double & sequential | | | 10th | 28th | Introduction to TQM & ISO - 9000. | | | | 29th | Production Planning & Control (PPC): Introduction to Forecasting - Simple & Weighted moving average methods | | | | 30th | Objectives & variables of PPC, Aggregate planning - Basic Concept, its relations with other decision areas | | | 11th | 31st | Class Test | | | | 32nd | Decision options - Basic & mixed strategies, Master production schedule (MPS), | | | | 33rd | Scheduling Operations Various methods for line & intermittent production systems, Gantt chart, Sequencing - Johnson algorithm for n-Jobs-2 machines | | | 12th | 34th | n- Jobs-3 machines, 2 Jobs n-machines | | |------|------|--|--| | - | 35th | n-Jobs m-machines Various | | | - | 36th | means of measuring effectiveness of PPC, Introduction to JIT, Numericals | | | 13th | 37th | Management Information Systems (MIS): What is MIS? Importance of MIS | | | - | 38th | Organizational & information system structure, Role of MIS in decision making | | | - | 39th | Data flow diagram, Introduction to systems analysis & design | | | 14th | 40th | Organizing information systems | | | | 41st | Product Design and Development: Various Approaches, Product life cycle | | | - | 42nd | Role 3S's – Standardization | | | 15th | 43rd | Simplification, Specialization, Introduction to value engineering and analysis | | | | 44th | Role of Ergonomics in Product Design | | | | 45th | Class Test | | Name of Faculty : **Umesh Gupta** Discipline : ME Semester : 6th Subject : AUTOMOBILE ENGINEERING (ME-302-F) Lesson Plan Duration : 15 weeks (From Jan 2018 to Apr 2018) **Workload (lecture/ practical) per week (in hours): lectures (3), Practical's (2). | Weeks | | Theory | Practical's | | | |-----------------|-----------------|--|-----------------|---|--| | | Lecture
day | Topic (including assignment/test) | Practical day | Topic | | | 1 st | 1 st | Introduction to Automobiles: Classification, Components, Requirements of Automobile Body; Vehicle Frame | 1 st | Introduction of lab equipments and discussion about safety measures | | | | 2 nd | Separate Body & Frame, Unitized
Body, Car Body Styles, Bus Body &
Commercial Vehicle Body Types;
Front Engine Rear Drive & Front
Engine Front Drive Vehicles | 2 nd | | | | | 3 rd | Four Wheel Drive Vehicles, Safety considerations; Safety features of latest vehicle; Future trends in automobiles | 3 rd | | | | 2 nd | 1 st | Clutches: Requirement of Clutches – Principle of Friction Clutch – Wet Type & Dry Types; Cone | 1 st | To study and prepare report on the constructional details, working principles and operation of the following- | | | | 2 nd | Clutch, Single Plate Clutch, Diaphragm
Spring Clutch, Multi plate Clutch,
Centrifugal Clutches | 2 nd | Automotive Engine Systems & Sub Systems. | | | | 3 rd | Numerical Electromagnetic Clutch,
Over Running Clutch; Clutch Linkages | 3 rd | | | | 3 rd | 1 st | Power Transmission : Requirements of transmission system; General | 1 st | | | | | | Arrangement of Power Transmission system | | To study and prepare report on the constructional details, working principles and operation of the following | |-----------------|-----------------|--|-----------------|---| | | 2 nd | Object of the Gear Box; Different types
of Gear Boxes; Sliding Mesh, Constant
Mesh, Synchro- mesh Gear Boxes | 2 nd | Fuels supply systems: | | | 3 rd | Epi-cyclic Gear Box, Freewheel Unit. Overdrive unit-Principle of Overdrive, Advantage of Overdrive, Transaxle, Transfer cases | 3 rd | | | 4 th | 1 st | Revision-1 | 1 st | To study and prepare report on the constructional details, working principles and | | | 2 nd | Assignment-1,2,3 | | operation of the following | | | 3 rd | Drive Lines, Universal Joint, Differential and Drive Axles: Effect of driving thrust and torque reactions | 3 rd | Automotive Clutches. | | 5 th | 1 st | Hotchkiss Drive, Torque Tube Drive
and radius Rods; Propeller Shaft | 1 st | To study and prepare report on the constructional details, working principles and operation of the following | | | 2 nd | Universal Joints, Slip Joint; Constant
Velocity Universal Joints; Front Wheel
Drive; Principle, Function,
Construction & Operation of
Differential; Rear Axles | 2 nd | Automotive Transmission systems. | | | 3 rd | Types of load coming on Rear Axles,
Full Floating, Three quarter Floating
and Semi Floating Rear Axles | 3 rd | | | 6 th | 1 st | Suspension Systems : Need of
Suspension System, Types of
Suspension | 1 st | To study and prepare report on the constructional details, working principles and operation of the following Automotive Drive Lines & Differentials. | | | 2 nd | factors influencing ride comfort, Suspension Spring; Constructional details and characteristics of leaf springs | 2 nd | | | | 3 rd | Numerical/Assignment | 3 rd | | | 7 th | 1 st | Steering System : Front Wheel geometry & Wheel alignment viz. Caster | 1 st | To study and prepare report on the constructional details, working principles and operation of the following | | | 2 nd | Camber, King pin Inclination, Toe-
in/Toe-out; Conditions for true rolling
motions of Wheels during steering | 2 nd | Automotive Suspension Systems | | | | | |------------------|-----------------|--|-----------------|---|--|--|--|--| | | 3 rd | Different types of Steering Gear Boxes;
Steering linkages and layout | 3 rd | | | | | | | 8 th | 1 st | 1st Sessional Exam | 1 st | To study and prepare report on the constructional details, working principles and | | | | | | | 2 nd | 1st Sessional Exam | 2 nd | operation of the following | | | | | | | 3 rd | 1 st Sessional Exam | 3 rd | Automotive Steering Systems. | | | | | | 9 th | 1 st | Power steering – Rack & Pinion Power
Steering Gear, Electronics steering | 1 st | To study and prepare report on the constructional details, working principles and operation of the following | | | | | | | 2 nd | Automotive Brakes, Tyres & Wheels | 2 nd | operation of the following Automotive Tyres & wheels. | | | | | | | 3 rd | Classification of Brakes; Principle and constructional details of Drum Brakes, Disc Brakes | 3 rd | Tratomotive Tyres & wheels. | | | | | | 10 th | 1 st | Brake actuating systems; Mechanical,
Hydraulic brake | 1 st | To study and prepare report on the constructional details, working principles and operation of the Automotive | | | | | | | 2 nd | Pneumatic Brakes; Factors affecting
Brake performance, Power & Power
Assisted Brakes | 2 nd | Brake systems. | | | | | | | 3 rd | Assignment | 3 rd | | | | | | | 11 th | 1 st | Tyres of Wheels; Types of Tyre & their constructional details | 1 st | To study and prepare report on the constructional details, working principles and | | | | | | | 2 nd | Wheel Balancing, Tyre Rotation; Types of Tyre wear & their causes | 2 nd | operation of Automotive Emission / Pollution control | | | | | | | 3 rd | CLASS TEST | 3 rd | systems. | | | | | | 12 th | 1 st | Revsion | 1 st | Practical revision and Problems | | | | | | | 2 nd | Emission Control System &
Automotive Electrical | 2 nd | | | | | | | | 3 rd | Sources of Atmospheric Pollution from the automobile | 3 rd | | | | | | | 13 th | 1 st | Emission Control Systems – Construction and Operation of Positive Crank Case Ventilation (PVC) Systems | 1 st | Practical revision and Problems | | | | | | | 2 nd | Evaporative Emission Control, Heated
Air Intake System, Exhaust Gas
Recirculation (ECR) Systems | 2 nd | | |------------------|-----------------|---|-----------------|---------------------------------| | | 3 rd | Air Injection System and Catalytic
Converters | 3 rd | | | 14 th | 1 st | construction & operation of lead acid Battery, Capacity Rating & Maintenance of Batteries | 1 st | Practical revision and Problems | | | 2 nd | CLASS TEST | 2 nd | | | | 3 rd | Purpose and Operation of Charging Systems | 3 rd | | | 15 th | 1 st | Purpose and Operations of the Starting
System | 1 st | Internal Viva Voce | | | 2 nd | Vehicle Lighting System | 2 nd | | | | 3 rd | Revision | 3 rd | | Name of Faculty : Vishal Gupta Discipline : ME Semester : 6th Subject : HT Lesson Plan Duration : 15 weeks (From Jan 2018 to Apr 2018) **Workload (lecture/ practical) per week (in hours): lectures (3), Practical's (2). | Weeks | | Theory | Practical's | | | |-----------------|-----------------|---|-----------------|---|--| | | Lecture
day | Topic (including assignment/test) | Practical day | Topic | | | 1 st | 1 st | Basics and Laws : Definition of Heat
Transfer, Reversible and irreversible
processes | 1 st | To determine the thermal conductivity of a metallic rod. | | | | 2 nd | Modes of heat flow | 2 nd | | | | | 3 rd | Combined heat transfer system and law of energy conservation | 3 rd | | | | 2 nd | 1 st | Numericals | 1 st | To determine the thermal conductivity of an insulating power. | | | | 2 nd | Steady State Heat Conduction :
Introduction, I-D heat conduction
through a plane wall | 2 nd | | | | | 3 rd | long hollow cylinder, hollow sphere | 3 rd | | | | 3 rd | 1 st | Conduction equation in Cartesian,
polar and spherical co-ordinate
systems, Numericals | 1 st | To determine the thermal conductivity of a solid by the guarded hot plate method. | | | | 2 nd | Numericals | 2 nd | | | | | 3 rd | Steady State Conduction with Heat
Generation | 3 rd | | | | 4 th | 1 st | Introduction, 1 – D heat conduction with heat sources | 1 st | To find the effectiveness of a pin fin in a rectangular duct natural convective condition | | | | 2 nd | Extended surfaces (fins), Fin effectiveness | 2 nd | and plot temperature distribution along its length. | | | | |------------------|-----------------|---|-----------------|--|--|--|--| | | 3 rd | 2-D heat conduction , Numericals | 3 rd | | | | | | 5 th | 1 st | Numericals | 1 st | To find the effectiveness of a pin fin in a rectangular duct under forced convective and | | | | | | 2 nd | Transient Heat Conduction: Systems with negligible internal resistance | 2 nd | plot temperature distribution along its length. | | | | | | 3 rd | cylinders, spheres with convective boundary conditions | 3 rd | | | | | | 6 th | 1 st | Transient heat conduction in plane walls Chart solution | 1 st | To determine the surface heat transfer coefficient for a heated vertical tube under | | | | | | 2 nd | Relaxation Method | 2 nd | natural convection and plot the variation of local heat transfer coefficient along the length of the tube. Also compare the results with | | | | | | 3 rd | Numericals | 3 rd | those of the correlation. | | | | | 7 th | 1 st | Numerical Problems | 1 st | To determine average heat transfer coefficient for a externally heated horizontal | | | | | | 2 nd | Numerical problems | 2 nd | pipe under forced convection & plot Reynolds and Nusselt numbers along the length of pipe. | | | | | | 3 rd | Surprise class test | 3 rd | Also compare the results with those of the correlations. | | | | | 8 th | 1 st | 1st Sessional Exam | 1 st | | | | | | | 2 nd | 1st Sessional Exam | 2 nd | | | | | | | 3 rd | 1st Sessional Exam | 3 rd | | | | | | 9 th | 1 st | Convection : Forced convection-
Thermal and hydrodynamic boundary
layers | 1 st | To measure the emmisivity of the gray body (plate) at different temperature and plot the variation of emmisivity with surface temperature. | | | | | | 2 nd | Equation of continuity, Momentum and energy equations | 2 nd | | | | | | | 3 rd | Some results for flow over a flat plate and flow through tube, Fluid friction and heat transfer (Colburn analogy) | 3 rd | | | | | | 10 th | 1 st | Free convection from a vertical flat plate, Empirical relations for free | 1 st | To find overall heat transfer coefficient and effectiveness of a heat exchange under | | | | | | | convection from vertical and horizontal o\planes & cylinders, Numericals | | parallel and counter flow conditions. Also plot the temperature distribution in both the | |------------------|-----------------|---|-----------------|--| | | 2 nd | Numericals | 2 nd | cases along the length of heat of heat exchanger. | | | 3 rd | Assignment | 3 rd | | | 11 th | 1 st | Thermal Radiation: The Stephen-Boltzmann law, The black body radiation | 1 st | To verify the Stefen-Boltzmann constant for thermal radiation. To determine the coefficient of impact for vanes. | | | 2 nd | Shape factors and their relationships,
Heat exchange between non black
bodies | 2 nd | | | | 3 rd | Electrical network for radiative exchange in an enclosure of two or three gray bodies | 3 rd | | | 12 th | 1 st | Radiation shields, Numericals | 1 st | Practical revision and Problems | | | 2 nd | Heat Exchangers: Classification,
Performance variables | 2 nd | | | | 3 rd | Analysis of a parallel/counter flow heat exchanger | 3 rd | | | 13 th | 1 st | Heat exchanger effectiveness,
Numericals | 1 st | Practical revision and Problems | | | 2 nd | Numericals | 2 nd | | | | 3 rd | Heat Transfer with Change of Phase | 3 rd | | | 14 th | 1 st | Laminar film condensation on a vertical plate, Drop-wise condensation | 1 st | Practical revision and Problems | | | 2 nd | Boiling regimes, Free convective,
Nucleate and film boiling | 2 nd | | | | 3 rd | Numerical Problems | 3 rd | | | 15 th | 1 st | Problems | 1 st | Internal Viva Voce | | | 2 nd | Problems | 2 nd | | | | 3 rd | CLASS TEST | 3 rd | | Name of Faculty : SATISH KUMAR Discipline : ME Semester : 6th Subject : Mechanical machine design-2 Lesson Plan Duration : 15 weeks (From Jan 2018 to Apr 2018) **Workload (lecture/ practical) per week (in hours): lectures (3). | Weeks | | Theory | | | | | |-----------------|-----------------|---|--|--|--|--| | | Lecture | Topic (including | | | | | | | day | assignment/test) | | | | | | 1 st | 1 st | Ergonomic concept | | | | | | | 2 nd | Value engg consideration in design | | | | | | | 3 rd | Design consideration for casting | | | | | | 2 nd | 1 st | Design consideration for forging | | | | | | | 2 nd | Design consideration for machining | | | | | | | 3 rd | Stress concentration factor and variable stress | | | | | | | 2 nd | Fatigue design consideration | | | | | | | 3 rd | Numerical | | | | | | 4 th | 1 st | Goodman criteria, numerical | | | | | | | 2 nd | Soderbergs criteria, Numerical | | | | | | | 3 rd | CLASS TEST | | | | | | 5 th | 1 st | Torsion Of Circular shaft | 2 nd | Design of shaft consideration | | |------------------|-----------------|--|--| | | 3 rd | Design of shaft consideration in static loading | | | 6 th | 1 st | Numerical | | | | 2 nd | Design of shaft consideration in dynamic loading | | | | 3 rd | Numerical/Assignment | | | 7 th | 1 st | Torsion Of Hollow Circular Member | | | | 2 nd | Hollow circular | | | | | shafts, tapered shaft, stepped shaft & composite circular shafts | | | | 3 rd | combined bending and | | | | | torsion, equivalent torque, effect of end thrust. Numericals | | | 8 th | 1 st | 1st Sessional Exam | | | | 2 nd | 1st Sessional Exam | | | | 3 rd | 1 st Sessional Exam | | | 9 th | 1 st | Springs : Types of Springs | | | | 2 nd | Design for helical springs against tension and their uses, | | | | 3 rd | Design of leaf springs | | | 10 th | 1 st | Surging phenomenon in springs | | | | 2 nd | Numericals | | | | 3 rd | Assignment | | | 11 th | 1 st | Bearings: design of pivot and collar bearing, Selection of ball and roller bearing based on static and dynamic | | | | | load carrying capacity using load-life relationship | | | | 2 nd | types of | | |------------------|-----------------|--|--| | | | lubrication | | | | 3 rd | Numericals | | | 12 th | 1 st | Design of journal bearings | | | | 2 nd | Lubricants and their properties,
Selection of suitable lubricants, | | | | 3 rd | Numerical/Assignments | | | 13 th | 1 st | Gears : Classification, Selection of gears, Terminology of gears | | | | 2 nd | Force analysis, Selection of material for gears, | | | | 3 rd | Beam & wear strength of gear tooth, Form or Lewis factor for gear tooth, | | | 14 th | 1 st | Dynamic load on gear teeth | | | | 2 nd | Numerical/Assignment | | | | 3 rd | Design problem | | | 15 th | 1 st | Design of spur, helical, bevel & worm gear | | | | 2 nd | Numerical/Assignment | | | | 3 rd | CLASS TEST | |